|
|||||||||
In this optomechanical arrangement, the disk moves mechanically, and an optical system counts pulses of light. On this mouse, the ball is 21 mm in diameter. The roller is 7 mm in diameter. The encoding disk has 36 holes. So if the mouse moves 25.4 mm (1 inch), the encoder chip detects 41 pulses of light. You might have noticed that each encoder disk has two infrared LEDs and two infrared sensors, one on each side of the disk (so there are four LED/sensor pairs inside a mouse). This arrangement allows the processor to detect the disk's direction of rotation. There is a piece of plastic with a small, precisely located hole that sits between the encoder disk and each infrared sensor. It is visible in this photo:
This piece of plastic provides a window through which the infrared sensor can "see." The window on one side of the disk is located slightly higher than it is on the other -- one-half the height of one of the holes in the encoder disk, to be exact. That difference causes the two infrared sensors to see pulses of light at slightly different times. There are times when one of the sensors will see a pulse of light when the other does not, and vice versa. This page offers a nice explanation of how direction is determined. The Optical Mouse
Developed by Agilent Technologies and introduced to the world in late 1999, the optical mouse actually uses a tiny camera to take 1,500 pictures every second. Able to work on almost any surface, the mouse has a small, red light-emitting diode (LED) that bounces light off that surface onto a complimentary metal-oxide semiconductor (CMOS) sensor. The CMOS sensor sends each image to a digital signal processor (DSP) for analysis. The DSP, operating at 18 MIPS (million instructions per second), is able to detect patterns in the images and see how those patterns have moved since the previous image. Based on the change in patterns over a sequence of images, the DSP determines how far the mouse has moved and sends the corresponding coordinates to the computer. The computer moves the cursor on the screen based on the coordinates received from the mouse. This happens hundreds of times each second, making the cursor appear to move very smoothly.
Optical mice have several benefits over wheeled mice:
Although LED-based optical mice are fairly recent, another type of optical mouse has been around for over a decade. The original optical-mouse technology bounced a focused beam of light off a highly-reflective mouse pad onto a sensor. The mouse pad had a grid of dark lines. Each time the mouse was moved, the beam of light was interrupted by the grid. Whenever the light was interrupted, the sensor sent a signal to the computer and the cursor moved a corresponding amount. This kind of optical mouse was difficult to use, requiring that you hold it at precisely the right angle to ensure that the light beam and sensor aligned. Also, damage to or loss of the mouse pad rendered the mouse useless until a replacement pad was purchased. Today's LED-based optical mice are far more user-friendly and reliable. |
|||||||||
|